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The interaction of waves with a row of circular 
cylinders 
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University of Bristol, University Walk, Bristol BS8 ITW, UK 
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The two-dimensional acoustics problem of the scattering of an obliquely incident plane 
wave by a row of equally-spaced circular cylinders is solved using multipole 
expansions. The method is superior to existing techniques available for this problem as 
it allows the far-field behaviour of the solution to be evaluated in a straightforward 
manner, and extensive results for the reflection and transmission coefficients are given. 
The problem described above has a direct analogue in the theory of water waves and 
this is also discussed. 

1. Introduction 
In this paper we will be concerned with a particular problem in the theory of 

diffraction gratings (i.e. arrays of equally spaced identical cylinders), namely the 
scattering of a plane sound or electromagnetic wave which is obliquely incident on a 
row of circular cylinders. An enormous literature exists on the general theory of 
gratings and the reader is directed to Petit (1980) and Wilcox (1984) for a detailed 
discussion and an extensive bibliography. 

The case of normal incidence for such a grating has been considered by a number 
of authors over the last one hundred years and many different methods of solution 
have been used. Apart from approximate techniques (see, for example, Lamb 1945, p. 
537; Martin & Dalrymple 1988) three substantially different approaches to the 
problem have been applied. The oldest of these uses separation of variables and is an 
extension of a method applicable to a finite array of cylinders due to Ziviika (1913) 
and applied to the grating case by von Ignatowsky (1914). In this method the total 
potential for the problem, which satisfies the Helmholtz equation, is expressed as a sum 
of the incident plane wave plus a general scattered wave emanating from each cylinder. 
Owing to the periodicity of the geometry and the fact that the wave is normally incident 
upon the grating, the scattered waves from each cylinder are identical. Using addition 
theorems for Bessel functions the total potential can then be expressed in polar 
coordinates centred on one particular cylinder and the body boundary condition 
applied. This method is an efficient way of solving the problem but has the drawback 
that whilst information about the field near to the grating is simple to obtain, the far- 
field behaviour of the solution is not so easy to recover. This is due to the fact that the 
solution is expressed in terms of cylindrical functions whereas it is known that the far 
field for this problem is a sum of plane waves. Twersky (1962) reproduces this theory 
alongside the second approach which is a specialization to circular cylinders of a 
general technique (Twersky 1956) for calculating the effect of a grating in terms of the 
effect of the individual scatterers that make up the grating. A similar technique can be 
found in Jones (1986,§8.37). This method is very powerful as it is applicable to the case 
when the incident wave is not normal to the line of the grating (see below) and can be 
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applied to any grating geometry. Thus Miles (1982) used it to provide an approximate 
formula for the low-frequency reflection and transmission coefficients when the 
cylinder size to spacing ratio is small and applied his results to the case where each 
cylinder was a thin flat plate making a constant angle with the line of the grating. The 
most recent method for normal incidence, due to Linton & Evans (1992) involves 
reducing the problem to one in a strip containing just one cylinder and then using 
multipole expansions, multipoles being functions which satisfy all the conditions of the 
problem apart from the body boundary condition, and which are singular at a point 
within the cylinder. The advantage of this method lies in the fact that these multipoles 
can be expanded simply in polar coordinates so that the body boundary condition can 
be applied but their far-field behaviour is that of a sum of plane waves. All these 
methods have their advantages but the method of Linton & Evans, while only being 
applicable to the circular cylindrical case, would appear to be the most powerful as it 
produces very simple results for all the quantities of interest including the reflection and 
transmission coefficients. 

In his paper Twersky (1962) also considers the case of oblique incidence, using both 
the separation of variables technique and his own general grating formulation. This 
problem seems to have been considered first, using a small cylinder approximation, by 
Macfarlane (1946). The remarks concerning these methods for the normal incidence 
case discussed above are equally applicable to the oblique case. In this paper we will 
extend the multipole method to cover oblique incidence and again show that simple 
results for the reflection and transmission coefficients are obtained, allowing extensive 
computations to be made. No numerical results were given by Twersky and to the 
authors’ knowledge, the only numerical results for reflection and transmission 
coefficients available for this problem appear in Achenbach, Lu & Kitahara (1988) who 
consider the fully three-dimensional problem of the scattering of a plane wave by a 
grating of circular cylinders by constructing a Fredholm integral equation of the 
second kind which is then solved numerically using the boundary element method. In 
their paper they present some results for the special case when the propagation vector 
is in a plane normal to the rods, corresponding to the two-dimensional problem we are 
considering here, and these results will be compared with those that we obtain. 

There is a direct counterpart in the theory of water waves to two-dimensional grating 
problems. Thus in water of constant finite depth, the interaction of a plane surface 
wave with an array of vertical cylinders extending throughout the water depth can be 
reduced to a two-dimensional problem by factoring out the depth dependence, and the 
resulting two-dimensional potential must again satisfy the Helmholtz equation. Thus 
Spring & Monkmeyer (1974) used ZAviSka’s method to consider the scattering by a 
finite array of vertical circular cylinders and a major simplification to this method was 
provided by Linton & Evans (1990). The water-wave problem of normal incidence on 
an infinite row of vertical circular cylinders was considered, using the same method, by 
Spring & Monkmeyer (1975) and also, using a Green function technique, by Miles 
(1983). The simplification provided by Linton & Evans (1990) can also be applied to 
this case and this will be illustrated, for arbitrary angle of incidence, in this paper. In 
the water-wave problem a quantity of interest is the force on the cylinder and the above 
method, like the multipole method, produces simple results. However, unlike the 
multipole method, it is not so straightforward to compute the reflection and 
transmission coefficients from this separation of variables solution. 

The multipole formulation will be given in $2, the multipoles themselves being 
derived, using a method described by Thorne (1953), in the Appendix. In $3 the 
separation of variables solution given by Twersky (1962) will be described together 
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with the simplification to this theory provided by Linton & Evans (1990). Aspects 
specific to the water-wave case will be discussed in $4, and extensive results given in $5. 

2. Multipole formulation 
We consider the two-dimensional problem that arises when a plane sound wave is 

incident upon an array of identical rigid circular cylinders of radius u in an acoustic 
medium. Let the (x, y)-plane be perpendicular to the generators of the cylinders so that 
the centres of the circles which are the cylinder cross-sections are situated at x = 0, 
y = 2md, m = 0, f 1 ,  f 2, . . . . Polar coordinates (r, 8) defined by x = r cos 8, y = r sin 8 
will also be used. The acoustic velocity potential, a, is assumed to be time-harmonic 
and we write 

so that (Vz + kZ) # = 0 outside the cylinders, (2.2) 
where k = w/c ,  c the speed of sound and w/2x the frequency. A plane wave of unit 
amplitude making an angle 8, (0 < 8, < in) with the positive x-axis is incident upon the 
cylinders. Thus the incident wave is of the form 

9 (2.3) 
where a = kcos8,; p = ksin8,. (2.4) 
As BI+0, @+O) we should recover the results for normal incidence given in Linton 
& Evans (1992). 

Since the incident wave is periodic in the y-direction and the array of cylinders 
extends over the whole y-axis, we seek a scattered wave field which has the term 
exp(ipy) in common with the incident wave. This together with the periodicity of 

# I  = &ax+iPy 

the geometry implies that 

where $ is periodic in y with period 2d. It follows that we need only consider the strip 
- d  < y < d and we note that from (2.5) we can derive the two-independent conditions 

The approach we now take is to construct multipoles #:), #f), symmetric and 
antisymmetric about the line x = 0, respectively. Such functions satisfy the Helmholtz 
equation in the strip 1 yl < d, - 00 < x < co, except at the origin where they are 
singular, and the periodicity conditions (2.6), (2.7). The derivation of these functions 
is carried out in the Appendix. 

We then express the velocity potential as 
m m 

n-0 n-I 

and determine the unknown constants an, b,, by applying the boundary condition on 
the cylinder which is 

gl =o. (2.9) 
ar r=a 

Noting that the incident potential can be written (Abramowitz & Stegun, 1964,9.1.41) 
m 

#, = X em imJm(kr) cos m(8- &), 
m-0 

(2.10) 
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where eo = 1, em = 2, m 2 1, and using the polar coordinate expansions of the 
multipoles (A 1 l), (A 19), (A 28) and (A 35) we can write, for r < 2d, 

m m 
#(r,  6) = CI Cm(r) cos me + C Sm(r) sin me, (2.1 1) 

Jz,(kr) cos 2m4 + C a, [a,,, n H,(kr) + g:, , Jzm(kr)l ,  (2.12) 

m-o m-1 where 
m 

Czm(r) = em( - 
fl-0 

C2m+l(r) = 2i( - Jzm+l(kr) cos (2m + 1) 8, 
W 

+ bn [ 4 m + l .  n Hn(kr) + @;+I, n Jzm+l(kr)l, (2.13) 
fl-1 

m 
sZm(r) = 2( - I ) ~  ~ ~ , ( k r )  sin 2m8, + I; b, [a,,, Hn(kr) + fitL, , Jzm(kr)],  (2.14) 

n-1 
and 

Szm+l(r) = 2i( - J2m+l(kr) sin (2m + 1) BI 
OD 

+ C an [Szm+l, n Hn(kr) + @;+I, n J,m+1 (kr)I* (2.15) 
If we define 

(2.16) 

- ( - 11% cos me, (m even), 
i( - l)i(m+l) sin me, (m odd), 

- ( - 1)fm sin me, (m even), 
i( - l)km+l) cos me, (m odd), 

(2.17) Gg) = 

(2.18) Gg’ = 

then the body boundary condition implies that 

Thus the c, and the d, each satisfy an infinite system of linear algebraic equations 
which can be solved by truncation. These equations can be shown to be equivalent to 
equations (4.7) and (4.8) of Linton & Evans (1992) in the limit P+O. 

The scaling introduced by (2.16) leads to well-conditioned systems of equations but 
some of the formulae that we shall derive are better expressed in terms of the 
coefficients a, and b,. Thus in what follows we shall use both sets, always bearing 
(2.16) in mind. 

The fact that the equations for the c, and the d, decouple is a consequence of the 
symmetry of the geometry about x = 0. An alternative method of solution is to 
decompose the problem into a symmetric and antisymmetric one, the sum of which is 
the solution to the problem in question. Thus if we define symmetric and antisymmetric 

potentials m 

+ c a,$:), (2.21) 1 -ioz+iSy 

fl-0 
#!3 = t$I +le 

(2.22) 
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application of the body boundary condition, which is now only applied on the part of 
the boundary in x < 0, to each of these potentials results in the systems (2.19) and 
(2.20). It is then clear from (2.8) that q5 = q5s+q5,. Note that q5s is the solution to the 
problem of scattering by a diffraction grating consisting of equally spaced semi-circular 
protrusions from a wall. 

The systems of equations (2.19) and (2.20) can be used to simplify the polar 
coordinate expansion (2.11). After some algebra we find that 

where the upper element of a bracketed pair is to be taken when m is even and the lower 
element when m is odd. Thus, using Wronskian relations for Bessel functions, 

The form of the potential as 1x1 + 00 can be obtained by substitution from (A lo), 
(A 18), (A 27) and (A 34) into (2.8). Thus as x+f  co 

This is of the form 
N 

exp (iax + ipy) + C R, exp (is, y - ikxt,) (x -+ - a), 

'2 Tp exp (ip, y + ikxt,) (x +. + co), 
p-- M 

N 

p--M 

(2.26) 

where 
1 ( w  

and 

W 

-sgnvp) c [iazn+l C,n+l(tp) +bzn s2n(tp)1} * (2.28) 
n-0 

Thus we see that in the far field the solution consists of the incident plane wave plus 
a sum of reflected and transmitted plane waves with amplitudes IRpl, ITPI, p = - M, ..., 
N, making angles x - 8 ,  and 8,, respectively, with the positive x-axis. From (A 7)- 
(A 9) we see that a plane wave of the form exp (ip, y+ikxt,) makes an angle 
8,( - t x  < 8, < in) with the positive x-axis where cos 8, = t,, sin 8, = /3,/k. Thus 
using (2.4) we have 

(2.29) sin 8, = sin 8, +px/kd ( p  = - M, . . ., N). 
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In particular 8, = 8, and 
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1 ' 0  
R, = (- 1)" [a,, cos 2n8, + ib,,,, cos (2n + 1) 8, 

kd cos 8, ,-, 
- ia2n+l sin (2n + 1) 8, - b,, sin 2n8J (2.30) 

1 "  ' = 1+kdcos8, ,-, c (- 1)" [a,, cos 2n8, -ib,,+, cos (2n + 1) 8, 

- iazra+l sin (2n + 1) 8, + b,, sin 2n8J (2.31) 

where (A 6), (A 14), (A 24) and (A 25) have been used. 
Applying Green's theorem to q5 - $, and its complex conjugate (see, for example, 

Achenbach et al. 1988) leads to a result which represents the conservation of energy. 
It is 

c t ,  (IRp12 + lq12) = t o .  (2.32) 

It is straightforward to obtain the behaviour of R, and T,  in the limit as kd + 0 with 
a/d fixed or as a/d -+ 0 with kd fixed. From (2.16), (2.19) and (2.20), using the fact that 
as x+O 

N 

p - - M  

(n = 01, 
2-,xn-l/(n- l)! (n 2 l), 

(n  = O), 
2nin!/nxn+1 (n 2 1)' 

Jb(x)  - { -'x 

it can be shown that in either of the above limits 
a, - -$ci(ka),, 
a, - - 'n(ka), sin 8,, 
b, - -'n(ka), cos Or, 

and a,, b, = O((ka)4), n 2 2. We thus obtain 

xika2 
4d cos 8, 

R, - - (1 + 2 COS 241, 

nika2 ' hl 1f4dcos81* 

(2.33) 
(2.34) 
(2.35) 

(2.36) 

(2.37) 

When just one mode is present these approximations can be improved by applying the 
conservation of energy condition as described by Miles (1982). We then obtain the 
approximations 

iE( I + 2 cos 28,) 
1 -it + 2% cos 28, cos2 8, ' 

R, x - (2.38) 

(2.39) 
1 - 252 cos 28, C O S ~  8, 

1 - it + 25, cos 28, cos2 8, ' q x  

where 5 = nka2/4dcos Or, 

3. Separation of variables solution 
An alternative method of solution to the problem under discussion is to use 

separation of variables as described in Twersky (1962). This procedure is an extension 
of a method devised by ZiviSka (191 3) for scattering by a finite array of cylinders and 
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subsequently presented in a water-wave context by Spring & Monkmeyer (1974). 
Linton & Evans (1990) greatly simplified the solution to the finite-array problem and 
in this section we will show that this simplification is also possible in the infinite-array 
case. 

We introduce polar coordinates (r,, em), m = 0, + 1, +2, ..., centred on the mth 
cylinder. Thus 

and ro = r, B0 = 8. From (2.3) and (2.4) we see that the incident wave can be written 
x = r,cosB,; y-2md = r,sin8,, (3.1) 

(3 4 

(3.3) 
The total potential $ can be represented as the sum of the incident wave potential 

and a circular wave emanating from each cylinder. A general form for such a wave 
emanating from the mth cylinder is 

$I = Z, exp [ikr, cos (8, - el)] 

I, = exp (2imkdsin 8J. 

where the phase factor I, is given by 

m $r = C A: Z ,  H,(kr,) exp (in8,) 
n=-m 

(3.4) 

where Z, = J’,(ka)/H’,(ka). (3.5) 

The quantities A: are unknown complex numbers which must be found by applying 
the boundary condition on the cylinders. Owing to the periodicity of the geometry it 
is clear that the only difference between the effect of the mth cylinder and that of the 
cylinder situated at the origin will be that due to the different phase of the incident wave 
at that cylinder. Thus we have 

where we have written A, for A:. With this considerable simplification we now need 
only apply the body boundary condition on one of the cylinders. 

A: = I ,  A,, (3.6) 

We have 
m m  

9 = $1 + C C A: 2, H,(kr,) exp (inem), (3 7) 
m--m n--m 

and this can be written in terms of r and 8 using (2.10) and Grafs addition theorem 
for Bessel functions (Abramowitz & Stegun, 1964, 9.1.79) : 

m 

$(r, 8) = C {J,(kr) exp [in& - 8 + O,)] + A, 2, H,(kr) exp (in@} 
n--m 

m m m 

+ C I ,  C A, 2, C JJkr) Hn+,(2mkd) exp [ip(n - 8) -$i sgn (m) (n + p )  R] 

(3.8) 

m--m n--m p--m 
+O 

provided r < 2d. Applying the boundary condition (2.9) leads to the infinite system of 
equations 

m m 

n--m m-1 
A ,  + C A, Z, exp [ai(p - n) R] C H,-,(2mkd) [Z, + (- l)n-pI-m] 

= -exp[ip($~-8J] (p = 0, k I ,  k2,  ...). (3.9) 
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This is equivalent to equation (29) in Twersky (1962). Again this system, like (2.19) and 
(2.20), must be solved by truncation. The sum over rn is slowly convergent and must 
be considered carefully in any numerical computations. Methods for the accurate 
evaluation of sums of the form C:,,H,(rnx) have been considered by a number of 
previous authors, see for example Yeung & Sphaier (1989) and Thomas (1991). 

We now simplify (3.8) so as to obtain a compact expression for qi near to the grating. 
We notice that the triple sum in (3.8) can be rearranged to give 

m m W 

C Jp(kr) exp (ipB) C A, 2, exp [ii( p -  n) n] C Hn-p (2mkd) [I, + (- 
which is simply, from (3.9), 

I-,], 
p--  w n--W m = l  

W 

C Jp(kr) exp ($3) (- exp [ip(in - B,)] - A p ) .  
p--W 

We thus have, for a < r < 2d, 
W 

$(r, 0) = C A ,  exp (in@ [ Z ,  H,(kr) - J,(kr)] (3.10) 
n--W 

and in particular 
2i O0 A,exp(inO) 

nka n--w H:(ka) ' 
$(a, 0) = -- C (3.1 1) 

More generally we can show that if a < rm < 2d then 

W 

$(rm, ern) = Zm C Anexp (inern) [Zn Hn(krm)-Jn(krm)l- (3.12) 

These simple formulae are of precisely the same form as those which have been derived 
for the finite array case (equations (2.13) and (2.14) in Linton & Evans 1990), though 
the unknown coefficients are the solution of a different system of equations. 

The reflection and transmission coefficients are not readily evaluated from this 
formulation, but comparison of (3.1 1) with (2.24) shows that the unknown coefficients 
A, are related to the unknowns a, and b, by 

a, = AOZ,, (3.13) 

n--m 

(3.14) 

(3.15) 

where the upper element of a bracketed pair is to be taken if n is even and the lower 
element when n is odd. Thus a, and b, can be evaluated and R ,  and Tp computed from 
(2.27) and (2.28). 

4. Water waves 
The two-dimensional acoustics problem formulated in 52 has a direct analogue in 

three-dimensional water-wave theory. Thus for water-wave scattering by a row of 
vertical cylinders extending throughout the water depth - which is assumed to be 
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constant everywhere - the depth dependence of the problem can be factored out. If z 
is taken as the vertical coordinate with z = 0 the undisturbed free surface and z = - h 
the sea-bed, then the total velocity potential can be written 

@(x, y, z, t )  = Re {$(x, y) cosh k(z + h) e-'&}, (4.1) 

ktanhkh = w2/g, (4.2) 

where @ is harmonic and k is the unique positive root of the dispersion relation 

where g is the acceleration due to gravity. The potential $ satisfies the same boundary- 
value problem as the function $ defined in (2.1) and is thus given by (2.8) with the a, 
and b, determined by solving (2.19) and (2.20). The far-field behaviour of $ is given 
by (2.2942.3 1). 

In the water-wave context another quantity of interest apart from the reflection and 
transmission coefficients is the exciting force on a cylinder, which is the integral of the 
dynamic fluid pressure (= ipw$, p the fluid density), multiplied by an appropriate 
component of the normal to the body surface, over the body surface. Thus, in this case, 
the force on the cylinder situated at the origin in the x-direction is Re{Xe-'"'} where 

X = - ipwa Jg' $Ir-= cos 8 d8 dz, 
-h 0 

which can be evaluated using (2.24) as 

2ipg tanh kh 
k2 J',(ka) bl' 

X =  

or using (3.1 1) as 
2ipg tanh kh 
k2 H i(ka) (A1-A-1). X =  

(4.3) 

(4.4) 

(4.5) 

If the cylinder were in isolation then it is well known (MacCamy & Fuchs 1954) that 
this force would be Fcos8, where 

4pg tanh kh 
k2H ;(ka) ' 

F= 

Thus, the force magnification factor in the x-direction, 5, defined as JX/Fcos8,l is 
given by 

Similarly we write the exciting force in the y-direction as Re { Y ediWt} and then the force 
magnification factor in the y-direction is 

5. Results 
The analysis of @2 and 3 provides two alternative methods for computing the 

solution. First, the systems of equations (2.19) and (2.20) can be solved and then the 
reflection and transmission coefficients computed from (2.27) and (2.28). Secondly, we 
can solve (3.9) and then evaluate the coefficients a, and b, required for the reflection 
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0.6 - 

0.4 - 

0.2 - 

1 

\ \  
\ \ 1 4 1 1  

5 

and transmission coefficients from (3.13H3.15). In both cases results can be checked 
against (2.32). Computations suggest that the former of these procedures is both more 
efficient and more accurate. For small values of a / d  the two methods produce identical 
answers that satisfy (2.32) to high accuracy. As a / d  increases, computing accurate 
results from (3.9) becomes more and more difficult. This problem also arises when 
using the multipole method though to a much lesser extent and this will be discussed 
below. With the above comments in mind we will restrict our attention to the use of 
the multipole method in what follows. 

The systems of equations (2.19) and (2.20) must be solved by truncating each system 
to an n x n system and checking the convergence of the results as n increases. Except 
when a / d  is very close to one, these systems converge extremely rapidly and in the 
results that follow a value of n = 4 was taken. Linton & Evans (1992) found that for 
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with 

the p = 0 problem it was sufficient to truncate their equations to 2 x 2 systems and this 
is in fact equivalent to using n = 4 in the oblique incidence case since when p = 0 only 
the even coefficients in (2.19) and the odd coefficients in (2.20) are non-zero. All the 
results that are presented below have been checked against the formula (2.32) and in 
all cases the difference between the left- and right-hand sides of this equation was less 
than lo-*. 

We begin by comparing our results with those of Achenbach et al. (1988). In their 
paper, which considers the fully three-dimensional problem of scattering by a grating 
of circular cylinders using a numerical method, they present some results for the special 
case corresponding to the two-dimensional problem under consideration in this paper. 
Thus their figures 4(a)-(c) show the absolute values of the reflection and transmission 
coefficients plotted against ka when a / d  = 0.4 for the three cases 8, = 0", 30" and 60". 
Our results for these cases, computed using the multipole method, are shown in figure 
1. In general, agreement is good, though there are some discrepancies, particularly, in 
the 8, = 60" case. Our results, being much simpler to evaluate, have been computed at 
very small intervals of ka so as to resolve the very spiky nature of the solution, whereas 
the results in Achenbach et al. (1988) seem not to have been evaluated at so many 
points. 

The number of propagating modes that exist for a particular combination of 
parameters is determined by the number of integers p for which t , ,  defined by (A 7): 
is real. Thus there is a reflected and a transmitted wave for each p which satisfies 

-1 < sin8,+pn/kd< 1. (5.1) 

Achenbach et al. (1988) state that the reflection and transmission coefficient curves are 
discontinuous at the points where additional modes appear since the energy is 
redistributed over more propagating modes. Our work, and also results from Linton 
& Evans (1992), suggests that this is not the case. Whilst IR,J and ITPI, p + 0, have finite 
values when they appear, the energy associated with such modes is t ,  JR,I2 and t ,  ITPI*, 
respectively, and careful computation of these energies just above the values of k at 

14 F L M  251 
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which the modes appear shows that the energies increase from zero (albeit very rapidly) 
and thus that the curves representing the modulus of the reflection and transmission 
coefficients are in fact continuous. An illustration is provided by figure 2 which shows 
the energies associated with the various modes for the case shown in figure ] ( a ) ,  
around the value of k at which the modes corresponding to p = 

Note that for normal incidence (as in figure l ( a )  or 2) modes appear in pairs 
corresponding to & p .  These wave travel at angles f8, to the x-axis and can be 
combined to give the channel modes discussed in Linton & Evans (1992). 

The variation of the reflected and transmitted mode amplitudes with 8, is shown in 
figure 3 for the case when a / d  = 0.5. In figure 3(a), kd = 1 and we see from (5.1) that 
since kd < in the only mode that exists corresponds to p = 0, no matter what the angle 
of incidence is. In this case we see that most of the incident energy is transmitted 
through the grating for incident wave angles up to about 85" with total transmission 
being achieved at 8, x 75". When kd = 2, depicted in figure 3(b), reference to (5.1) 
shows that provided sin 8, > t x  - 1, (8, > 34.8"), p = - 1 gives rise to a reflected and 
transmitted wave. In figure 3(c) which shows the case when kd = 4 many more modes 
are possible with p = - 2  in the range in- 1 < sin 8, < 1 ,  (34.8" < 6, < 90°), p = - 1 
and p = 0 in the range 0 < sin8, < 1, (0" < 8, < 90"), and p = 1 in the range 
0 < sin 8, < 1 -ax, (0' < 0, < 12.4"). In all three of these figures we can see that as 8, 
approaches 90", so-called grazing incidence, the amplitudes of all but the fundamental 
reflected mode tend to zero, whilst JR,I + 1. 

I t  is clear from (5.1) that the body size has no bearing on the number of propagating 
modes that exist. Figure 4 shows the variation of reflected and transmitted mode 
amplitudes with a / d  for a case when two reflected and transmitted modes are present, 
namely kd = 2, 8, = 45". The maximum value of a / d  shown in the figure is 0.8. For 
values of a/d  greater then about 0.85 (< 1) the method does not appear to converge 
as the truncation parameter is increased. Numerical tests suggest that as increases 
the largest value of a / d  for which convergence is achieved decreases with no problems 
being encountered, even when a/d  = 1, when 8, = 0. Note that when the method does 
converge, the convergence is always rapid. The cause of this lack of convergence is 
unclear though it is apparent on physical grounds that the problem is more difficult to 
model when the gaps between the cylinders is very small since very large fluid motions 
are being compressed into very small regions. It is also worth noting that Callan, 
Linton & Evans (1991), who proved the existence of trapped modes for a cylinder in 
a channel, were only able to prove existence when a / d  was strictly less than unity. 

The wide-spacing approximation (2.38) is compared with the full solution in figure 
5 .  The amplitude of the reflection coefficient is plotted against a / d  for three different 
values of a/d  for the case when 8 = 45". It can be seen that the accuracy of the 
approximation deteriorates as kd increases, the error for kd = 0.5, 1 and 1.5 being 
about 7 YO, 9 YO and 12 YO respectively when a/d  = 0.2. 

We now turn our attention to the computation from the multipole method of force 
magnification factors for the water-wave problem, 1F.I and IFv\, defined by (4.7) and 
(4.8), respectively. Figure 6 shows how these quantities vary with kd when a / d  = 0.5 
for three values of the incident wave angle. Figure 6(a )  shows IF,[ whilst IFJ is shown 
in figure 6(b). Note that 141 is not defined when 0, = 0. The spikes in the curves occur 
at places where modes appear/disappear and it is clear that the component of the force 
in line with the grating is affected by the presence of the grating to a much larger extent 
than that perpendicular to the grating with lFJ > 3 when Or = 30", kd = 4.25. 

Figure 7 shows the variation of IF,1 and IFJ, respectively, with 0, when a / d  = 0.5 for 
the three cases kd = 1, 2 and 4. The reflection and transmission coefficients for these 
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FIGURE 2. Energies associated with the various modes shown in figure 1 (a). 

parameter values were shown in figure 3. The correspondence between the spikes in the 
force magnification factor curves and the changes in the number of propagating modes 
is clear and again very large values of IFJ are apparent with IFJ x 5 when kd = 4, 

Finally in figure 8, 1F.I and lfJ are plotted against a / d  for the case kd = 2, 8, = 45". 
The number of propagating modes present is not affected by the value of a/d and as 
result there are no spikes in these curves. 

e, = 140. 

6. Conclusion 
The two-dimensional acoustics problem of the scattering of an obliquely incident 

plane wave by a grating consisting of equally-spaced identical circular cylinders is 
solved by representing the solution as a multipole expansion, with the unknown 
coefficients in the expansion given by the solution of an infinite system of linear 
algebraic equations which can be solved numerically by truncation. The multipoles 
themselves can be expressed in terms of contour integrals and this enables the far-field 
behaviour of the solution to be simply evaluated in terms of the contributions from a 
finite number of poles. This leads to simple formulae for the reflection and transmission 
coefficients, quantities which are very difficult to obtain when this problem is solved 
using other known techniques. 

One alternative method of solution is to use separation of variables and a description 
of this procedure is also included. Again an infinite system of linear algebraic equations 
must be solved. A major simplification to this theory, described for the case of a finite 
array of cylinders in Linton & Evans (1990), is given, and this allows solutions of the 
infinite systems that arise in the separation of variables method to be directly related 
to those from the multipole expansion procedure. Either system can then be solved, 
and the multipole expansion theory used to determine the reflection and transmission 
coefficients. 

Numerical calculations using both methods have been performed but it was found 
that the multipole method was both more efficient and more accurate. Extensive results 

14-2 
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FIGURE 3 (a, b) For caption see facing page. 

for the reflection and transmission coefficients are presented together with force 
magnification factors which are relevant to the associated water-wave problem. In 
virtually all cases the multipole method was found to be a very accurate and highly 
efficient procedure. It was found however that as the angle of incidence was increased 
it became more difficult to obtain results for large values of a/d ,  i.e. values of a / d  close 
to 1. This problem is even greater with the separation of variables technique. The 
reason for this lack of convergence of the infinite systems which the cylinders are nearly 
touching with highly oblique incidence is unclear. 



70 I 

0 

FIGURE 3. Reflected and transmitted mode amplitudes plotted against 8, for a grating with 
a/d  = 0.5. (a) kd = 1, (6)  kd = 2, (c)  kd = 4.  

Appendix. Multipoles 

with periodic boundary conditions. Thus we seek functions q5 which satisfy 
In this Appendix we derive expressions for multipoles suitable for problems in a strip 

(A 1) (V' + k') q5 = 0 (- m < x < 00, - d < y < d), except at (0, 0), 
4Iv-d = e2iBd 41p-d (18 < k)' (A 2) 

and q5 behaves like a sum of outgoing plane waves as 1x1 + 00. The multipoles are 
constructed using the same method as was employed for channel multipoles (equivalent 
to the case /3 = 0) in Linton & Evans (1992) and only very brief details will be given 
here. 

The method involves modifying a ' free-space' wave source H,(kr) cos n8 or 
H,(kr) sinn8, where x = rcos8, y = rsin8 and H ,  = W:), to take account of the 
boundary conditions on y = fd. We will label the multipoles as &), q5i2), where a 
superscript (1) indicates symmetry about x = 0 and a superscript (2) indicates 
antisymmetry about this line. 

If we begin with H2, cos 2n8, using the integral form given by equation (2.26) in 
Linton & Evans (1992) suitably modified to be valid for all y ,  then we are led, after 
considerable algebra, to the result 

cos kxt c,,(t) dt. (A 4) 
2i 
n f e2ifldsgn(y) sinhkyl yl + sinh ky(2d- I y ( )  

y (cosh 2kyd-cos 2/34 
q5:: = -- 

Here 
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case 

1.5. 

and the contour of integration passes beneath all the poles on the real axis. These poles 
are at t = t,, p = - M ,  ..., N ,  where 

(A 7) 
P, = B+PVd,  (A 8) 

t ,  = [1 - v p / k ) 2 1 ~ ,  

and M ,  N are positive integers such that 
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FIGURE 6. Force magnification factors plotted against a /d  for a grating with a /d  = 0.5. 
(a) x-direction, (b) y-direction. 

It can be shown that 

l N  
kd p - - M  

4:: N - C tp'cPn(fp)exp(i~py)exp(fikxtp) asx+ +co, (A 10) 

and that 

$P:(r, 8) = H,,(kr) cos 2n0 
m 

+ Z [fltA, 2n J,,(kr) cos 2m0 + q A + l ,  211 J2m+l(kr) sin (2m + 1) 01, (A 1 1) 
m-0 

where 
2ie, (e-2k~d-cos 2pd)  c,,(t) czm(t) 

"*" = -f n: y(cosh 2kyd- cos 2pd)  dt' 
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FIGURE 7. Force magnification factors plotted against 0, for a grating with a /d  = 0.5. 
(a) x-direction, (b)  y-direction. 

{ cos [(2n + 1) sin-' t ]  ( t  G 1) 
C2n+'( t )  = i( - 1)" sinh [(2n + 1) cosh-' t ]  ( t  > 1)' 

This polar coordinate expansion is valid for r < 2d. By splitting these integrals into a 
principal value integral and a sum of contributions from the poles we obtain 



0.5 - 

1 

The quantities Im [E!!A, 2n]  and Re 2n] must be evaluated numerically. This can 
be done using the method described in Linton & Evans (1992) or that used by Mclver 
& Bennett (1992). As P + O ,  E!At1,2n + O  and $fd tends to the channel multipole $in of 
Linton & Evans (1992). 

Similarly we have 

cos kxt c ~ ~ + ~ ( z )  dt 2 sgn ( y) exp [2i/?dsgn ( y)] cosh kyy - cosh ky(2d- I yl) 
y(cosh2kyd-~0~2/3d) 

(A 17) 
R F $E+l = 

and 
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For multipoles antisymmetric about x = 0 we define 

sin [2n sin-' t] ( 2  < I), 
- i( - 1)" sinh [2n cosh-' I ]  (t > I ) ,  s2n(0 = { 
sin [(2n + 1) sin-' t]  ( 1  < 11, 

szn+l(t) = { (- 1) " cosh [(2n + 1) cosh-' t ]  (t > l), 
and then 

exp [2ipdsgn(y)]coshkyy-cosh ky(2d- ly I) 
sin kxt szn(t) dt 

(cash 2kyd- cos 2pd) 

where 

and 

exp [2i@dsgn ( y)] sinh ky I yl + sinh ky(2d - I yl) 
sin kxt sZn+'(t) dt x y (cash 2kyd- cos 2pd) 

- Ti C ~ ~ ' ~ , , + , ( t ~ ) e x p ( i ~ , y ) e x p ( ~ i k x t , )  a s x + l  co, (A 34) kd p - - M  

where 



and 

As p+O, l $ ~ ~ , 2 n + 1 - + 0  and q5i2+l tends to the channel multipole of Linton & 
Evans (1992). 

and 4:; have no counterparts in Linton 
& Evans (1992). The multipoles that result when this limit is taken would be suitable 
for problems in a channel that have antisymmetry about the centreline of the channel 
with 4 = 0 on the channel walls. 

The limits as p+O of the multipoles 
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